
Exam AZ-400: Designing and Implementing Microsoft 

DevOps Solutions – Skills Measured 

This exam was updated on November 30, 2021. Following the current exam guide, we 

have included a version of the exam guide with Track Changes set to “On,” showing the 

changes that were made to the exam on that date. 

NOTE: Passing score: 700. Learn more about exam scores here. 

Audience Profile 

Candidates for this exam should have subject matter expertise working with people, processes, 

and technologies to continuously deliver business value. 

Responsibilities for this role include designing and implementing strategies for collaboration, 

code, infrastructure, source control, security, compliance, continuous integration, testing, 

delivery, monitoring, and feedback. 

A candidate for this exam must be familiar with both Azure administration and development and 

must be expert in at least one of these areas. 

Skills Measured 

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we are 

assessing that skill. This list is NOT definitive or exhaustive. 

NOTE: Most questions cover features that are general availability (GA). The exam may contain 

questions on Preview features if those features are commonly used. 

Develop an instrumentation strategy (5-10%) 

Design and implement logging 

 assess and configure a logging framework 

 design a log aggregation and storage strategy (e.g., Azure storage) 

 design a log aggregation and query strategy (e.g., Azure Monitor, Splunk, Exabeam, 

LogRhythm) 

 interrogate Log Analytics logs using basic Kusto (KQL) queries 

 manage access control to logs (workspace-centric/resource-centric) 

 integrate crash analytics (App Center Crashes, Crashlytics) 

Design and implement telemetry 

 design and implement distributed tracing 

https://docs.microsoft.com/learn/certifications/exam-scoring-reports#scores-needed-to-pass-exams


 inspect application performance indicators 

 inspect infrastructure performance indicators 

 define and measure key metrics (CPU, memory, disk, network) 

 implement alerts on key metrics (email, SMS, webhooks, Teams/Slack) 

 integrate user analytics (e.g., Application Insights funnels, Visual Studio App Center, 

TestFlight, Google Analytics) 

Integrate logging and monitoring solutions 

 configure and integrate container monitoring (Azure Monitor, Prometheus, etc.) 

 configure and integrate with monitoring tools (Azure Monitor Application Insights, 

Dynatrace, New Relic, Naggios, Zabbix) 

 create feedback loop from platform monitoring tools (e.g., Azure Diagnostics extension, 

Log Analytics agent, Azure Platform Logs, Event Grid) 

 manage Access control to the monitoring platform 

Develop a Site Reliability Engineering (SRE) strategy (5-10%) 

Develop an actionable alerting strategy 

 identify and recommend metrics on which to base alerts 

 implement alerts using appropriate metrics 

 implement alerts based on appropriate log messages 

 implement alerts based on application health checks 

 analyze combinations of metrics 

 develop communication mechanism to notify users of degraded systems 

 implement alerts for self-healing activities (e.g., scaling, failovers) 

Design a failure prediction strategy 

 analyze behavior of system with regards to load and failure conditions 

 calculate when a system will fail under various conditions 

 measure baseline metrics for system 

 leverage Application Insights Smart Detection and Dynamic thresholds in Azure Monitor 

Design and implement a health check 

 analyze system dependencies to determine which dependency should be included in 

health check 

 calculate healthy response timeouts based on SLO for the service 

 design approach for partial health situations 

 design approach for piecemeal recovery (e.g., to improve recovery time objective 

strategies) 



 integrate health check with compute environment 

 implement different types of health checks (container liveness, startup, shutdown) 

Develop a security and compliance plan (10-15%) 

Design an authentication and authorization strategy 

 design an access solution (Azure AD Privileged Identity Management (PIM), Azure AD 

Conditional Access, MFA, Azure AD B2B, etc.) 

 implement Service Principals and Managed Identity 

 design an application access solution using Azure AD B2C 

 configure service connections 

Design a sensitive information management strategy 

 evaluate and configure vault solution (Azure Key Vault, Hashicorp Vault) 

 manage security certificates 

 design a secrets storage and retrieval strategy (KeyVault secrets, GitHub secrets, Azure 

Pipelines secrets) 

 formulate a plan for deploying secret files as part of a release 

Develop security and compliance 

 automate dependencies scanning for security (container scanning, OWASP) 

 automate dependencies scanning for compliance (licenses: MIT, GPL) 

 assess and report risks 

 design a source code compliance solution (e.g., GitHub Code scanning, GitHub Secret 

scanning, pipeline-based scans, Git hooks, SonarQube, Dependabot, etc.) 

Design governance enforcement mechanisms 

 implement Azure policies to enforce organizational requirements 

 implement container scanning (e.g., static scanning, malware, crypto mining) 

 design and implement Azure Container Registry Tasks 

 design break-the-glass strategy for responding to security incidents 

Manage source control (10-15%) 

Develop a modern source control strategy 

 integrate/migrate disparate source control systems (e.g., GitHub, Azure Repos) 

 design authentication strategies 

 design approach for managing large binary files (e.g., Git LFS) 



 design approach for cross repository sharing (e.g., Git sub-modules, packages) 

 implement workflow hooks 

 design approach for efficient code reviews (e.g., GitHub code review assignments, 

schedule reminders, Pull Analytics) 

Plan and implement branching strategies for the source code 

 define Pull Requests (PR) guidelines to enforce work item correlation 

 implement branch merging restrictions (e.g., branch policies, branch protections, manual, 

etc.) 

 define branch strategy (e.g., trunk based, feature branch, release branch, GitHub flow) 

 design and implement a PR workflow (code reviews, approvals) 

 enforce static code analysis for code-quality consistency on PR 

Configure repositories 

 configure permissions in the source control repository 

 organize the repository with git-tags 

 plan for handling oversized repositories 

 plan for content recovery in all repository states 

 purge data from source control 

Integrate source control with tools 

 integrate GitHub with DevOps pipelines 

 integrate GitHub with identity management solutions (Azure AD) 

 design for GitOps 

 design for ChatOps 

 integrate source control artifacts for human consumption (e.g., Git changelog) 

 integrate GitHub Codespaces 

Facilitate communication and collaboration (10-15%) 

Communicate deployment and release information with business stakeholders 

 create dashboards combining boards, pipelines (custom dashboards on Azure DevOps) 

 design a cost management communication strategy 

 integrate release pipeline with work item tracking (e.g., AZ DevOps, Jira, ServiceNow) 

 integrate GitHub as repository with Azure Boards 

 communicate user analytics 

Generate DevOps process documentation 



 design onboarding process for new employees 

 assess and document external dependencies (e.g., integrations, packages) 

 assess and document artifacts (version, release notes) 

Automate communication with team members 

 integrate monitoring tools with communication platforms (e.g., Teams, Slack, 

dashboards) 

 notify stakeholders about key metrics, alerts, severity using communication and project 

management platforms (e.g., Email, SMS, Slack, Teams, ServiceNow, etc.) 

 integrate build and release with communication platforms (e.g., build fails, release fails) 

 integrate GitHub pull request approvals via mobile apps 

Define and implement continuous integration (20-25%) 

Design build automation 

 integrate the build pipeline with external tools (e.g., Dependency and security scanning, 

Code coverage) 

 implement quality gates (e.g., code coverage, internationalization, peer review) 

 design a testing strategy (e.g., integration, load, fuzz, API, chaos) 

 integrate multiple tools (e.g., GitHub Actions, Azure Pipeline, Jenkins) 

Design a package management strategy 

 recommend package management tools (e.g. GitHub Packages, Azure Artifacts, Azure 

Automation Runbooks Gallery, Nuget, Jfrog, Artifactory) 

 design an Azure Artifacts implementation including linked feeds 

 design versioning strategy for code assets (e.g., SemVer, date based) 

 plan for assessing and updating and reporting package dependencies (GitHub 

Automated Security Updates, NuKeeper, GreenKeeper) 

 design a versioning strategy for packages (e.g., SemVer, date based) 

 design a versioning strategy for deployment artifacts 

Design an application infrastructure management strategy 

 assess a configuration management mechanism for application infrastructure 

 define and enforce desired state configuration for environments 

Implement a build strategy 

 design and implement build agent infrastructure (include cost, tool selection, licenses, 

maintainability) 



 develop and implement build trigger rules 

 develop build pipelines 

 design build orchestration (products that are composed of multiple builds) 

 integrate configuration into build process 

 develop complex build scenarios (e.g., containerized agents, hybrid, GPU) 

Maintain build strategy 

 monitor pipeline health (failure rate, duration, flaky tests) 

 optimize build (cost, time, performance, reliability) 

 analyze CI load to determine build agent configuration and capacity 

Design a process for standardizing builds across organization 

 manage self-hosted build agents (VM templates, containerization, etc.) 

 create reuseable build subsystems (YAML templates, Task Groups, Variable Groups, etc.) 

Define and implement a continuous delivery and release management 

strategy (10-15%) 

Develop deployment scripts and templates 

 recommend a deployment solution (e.g., GitHub Actions, Azure Pipelines, Jenkins, 

CircleCI, etc.) 

 design and implement Infrastructure as code (ARM, Terraform, PowerShell, CLI) 

 develop application deployment process (container, binary, scripts) 

 develop database deployment process (migrations, data movement, ETL) 

 integrate configuration management as part of the release process 

 develop complex deployments (IoT, Azure IoT Edge, mobile, App Center, DR, multi-

region, CDN, sovereign cloud, Azure Stack, etc.) 

Implement an orchestration automation solution 

 combine release targets depending on release deliverable (e.g., Infrastructure, code, 

assets, etc.) 

 design the release pipeline to ensure reliable order of dependency deployments 

 organize shared release configurations and process (YAML templates, variable groups, 

Azure App Configuration) 

 design and implement release gates and approval processes 

Plan the deployment environment strategy 

 design a release strategy (blue/green, canary, ring) 



 implement the release strategy (using deployment slots, load balancer configurations, 

Azure Traffic Manager, feature toggle, etc.) 

 select the appropriate desired state solution for a deployment environment (PowerShell 

DSC, Chef, Puppet, etc.) 

 plan for minimizing downtime during deployments (VIP Swap, Load balancer, rolling 

deployments, etc.) 

 design a hotfix path plan for responding to high priority code fixes 

 

The exam guide below shows the changes that were implemented on November 30, 2021. 

 

Audience Profile 

Candidates for this exam should have subject matter expertise working with people, processes, 

and technologies to continuously deliver business value. 

Responsibilities for this role include designing and implementing strategies for collaboration, 

code, infrastructure, source control, security, compliance, continuous integration, testing, 

delivery, monitoring, and feedback. 

A candidate for this exam must be familiar with both Azure administration and development and 

must be expert in at least one of these areas. 

Skills Measured 

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we are 

assessing that skill. This list is NOT definitive or exhaustive. 

NOTE: Most questions cover features that are General Availability (GA). The exam may contain 

questions on Preview features if those features are commonly used. 

Develop an instrumentation strategy (5-10%) 

Design and implement logging 

 assess and configure a logging framework 

 design a log aggregation and storage strategy (e.g., Azure storage) 

 design a log aggregation and query strategy (e.g., Azure Monitor, Splunk, Exabeam, 

LogRhythm) 

 interrogate Log Analytics logs using basic Kusto (KQL) queries 

 manage access control to logs (workspace-centric/resource-centric) 

 integrate crash analytics (App Center Crashes, Crashlytics) 



Design and implement telemetry 

 design and implement distributed tracing 

 inspect application performance indicators 

 inspect infrastructure performance indicators 

 define and measure key metrics (CPU, memory, disk, network) 

 implement alerts on key metrics (email, SMS, webhooks, Teams/Slack) 

 integrate user analytics (e.g., Application Insights funnels, Visual Studio App Center, 

TestFlight, Google Analytics) 

Integrate logging and monitoring solutions 

 configure and integrate container monitoring (Azure Monitor, Prometheus, etc.) 

 configure and integrate with monitoring tools (Azure Monitor Application Insights, 

Dynatrace, New Relic, Naggios, Zabbix) 

 create feedback loop from platform monitoring tools (e.g., Azure Diagnostics extension, 

Log Analytics agent, Azure Platform Logs, Event Grid) 

 manage Access control to the monitoring platform 

Develop a Site Reliability Engineering (SRE) strategy (5-10%) 

Develop an actionable alerting strategy 

 identify and recommend metrics on which to base alerts 

 implement alerts using appropriate metrics 

 implement alerts based on appropriate log messages 

 implement alerts based on application health checks 

 analyze combinations of metrics 

 develop communication mechanism to notify users of degraded systems 

 implement alerts for self-healing activities (e.g., scaling, failovers) 

Design a failure prediction strategy 

 analyze behavior of system with regards to load and failure conditions 

 calculate when a system will fail under various conditions 

 measure baseline metrics for system 

 leverage Application Insights Smart Detection and Dynamic thresholds in Azure Monitor 

Design and implement a health check 

 analyze system dependencies to determine which dependency should be included in 

health check 

 calculate healthy response timeouts based on SLO for the service 

 design approach for partial health situations 



 design approach for piecemeal recovery (e.g., to improve recovery time objective 

strategies) 

 integrate health check with compute environment 

 implement different types of health checks (container liveness, startup, shutdown) 

Develop a security and compliance plan (10-15%) 

Design an authentication and authorization strategy 

 design an access solution (Azure AD Privileged Identity Management (PIM), Azure AD 

Conditional Access, MFA, Azure AD B2B, etc.) 

 implement Service Principals and Managed Identity 

 design an application access solution using Azure AD B2C 

 configure service connections 

Design a sensitive information management strategy 

 evaluate and configure vault solution (Azure Key Vault, Hashicorp Vault) 

 manage security certificates 

 design a secrets storage and retrieval strategy (KeyVault secrets, GitHub secrets, Azure 

Pipelines secrets) 

 formulate a plan for deploying secret files as part of a release 

Develop security and compliance 

 automate dependencies scanning for security (container scanning, OWASP) 

 automate dependencies scanning for compliance (licenses: MIT, GPL) 

 assess and report risks 

 design a source code compliance solution (e.g., GitHub Code scanning, GitHub Secret 

scanning, pipeline-based scans, Git hooks, SonarQube, Dependabot, etc.) 

Design governance enforcement mechanisms 

 implement Azure policies to enforce organizational requirements 

 implement container scanning (e.g., static scanning, malware, crypto mining) 

 design and implement Azure Container Registry Tasks 

 design break-the-glass strategy for responding to security incidents 

Manage source control (10-15%) 

Develop a modern source control strategy 

 integrate/migrate disparate source control systems (e.g., GitHub, Azure Repos) 



 design authentication strategies 

 design approach for managing large binary files (e.g., Git LFS) 

 design approach for cross repository sharing (e.g., Git sub-modules, packages) 

 implement workflow hooks 

 design approach for efficient code reviews (e.g., GitHub code review assignments, 

schedule reminders, Pull Analytics) 

Plan and implement branching strategies for the source code 

 define Pull Requests (PR) guidelines to enforce work item correlation 

 implement branch merging restrictions (e.g., branch policies, branch protections, manual, 

etc.) 

 define branch strategy (e.g., trunk based, feature branch, release branch, GitHub flow) 

 design and implement a PR workflow (code reviews, approvals) 

 enforce static code analysis for code-quality consistency on PR 

Configure repositories 

 configure permissions in the source control repository 

 organize the repository with git-tags 

 plan for handling oversized repositories 

 plan for content recovery in all repository states 

 purge data from source control 

Integrate source control with tools 

 integrate GitHub with DevOps pipelines 

 integrate GitHub with identity management solutions (Azure AD) 

 design for GitOps 

 design for ChatOps 

 integrate source control artifacts for human consumption (e.g., Git changelog) 

 integrate GitHub Codespaces 

Facilitate communication and collaboration (10-15%) 

Communicate deployment and release information with business stakeholders 

 create dashboards combining boards, pipelines (custom dashboards on Azure DevOps) 

 design a cost management communication strategy 

 integrate release pipeline with work item tracking (e.g., AZ DevOps, Jira, ServiceNow) 

 integrate GitHub as repository with Azure Boards 

 communicate user analytics 



Generate DevOps process documentation 

 design onboarding process for new employees 

 assess and document external dependencies (e.g., integrations, packages) 

 assess and document artifacts (version, release notes) 

Automate communication with team members 

 integrate monitoring tools with communication platforms (e.g., Teams, Slack, 

dashboards) 

 notify stakeholders about key metrics, alerts, severity using communication and project 

management platforms (e.g., Email, SMS, Slack, Teams, ServiceNow, etc.) 

 integrate build and release with communication platforms (e.g., build fails, release fails) 

 integrate GitHub pull request approvals via mobile apps 

Define and implement continuous integration (20-25%) 

Design build automation 

 integrate the build pipeline with external tools (e.g., Dependency and security scanning, 

Code coverage) 

 implement quality gates (e.g., code coverage, internationalization, peer review) 

 design a testing strategy (e.g., integration, load, fuzz, API, chaos) 

 integrate multiple tools (e.g., GitHub Actions, Azure Pipeline, Jenkins) 

Design a package management strategy 

 recommend package management tools (e.g. GitHub Packages, Azure Artifacts, Azure 

Automation Runbooks Gallery, Nuget, Jfrog, Artifactory) 

 design an Azure Artifacts implementation including linked feeds 

 design versioning strategy for code assets (e.g., SemVer, date based) 

 plan for assessing and updating and reporting package dependencies (GitHub 

Automated Security Updates, NuKeeper, GreenKeeper) 

 design a versioning strategy for packages (e.g., SemVer, date based) 

 design a versioning strategy for deployment artifacts 

Design an application infrastructure management strategy 

 assess a configuration management mechanism for application infrastructure 

 define and enforce desired state configuration for environments 

Implement a build strategy 



 design and implement build agent infrastructure (include cost, tool selection, licenses, 

maintainability) 

 develop and implement build trigger rules 

 develop build pipelines 

 design build orchestration (products that are composed of multiple builds) 

 integrate configuration into build process 

 develop complex build scenarios (e.g., containerized agents, hybrid, GPU) 

Maintain build strategy 

 monitor pipeline health (failure rate, duration, flaky tests) 

 optimize build (cost, time, performance, reliability) 

 analyze CI load to determine build agent configuration and capacity 

Design a process for standardizing builds across organization 

 manage self-hosted build agents (VM templates, containerization, etc.) 

 create reuseable build subsystems (YAML templates, Task Groups, Variable Groups, etc.) 

Define and implement a continuous delivery and release management 

strategy (10-15%) 

Develop deployment scripts and templates 

 recommend a deployment solution (e.g., GitHub Actions, Azure Pipelines, Jenkins, 

CircleCI, etc.) 

 design and implement Infrastructure as code (ARM, Terraform, PowerShell, CLI) 

 develop application deployment process (container, binary, scripts) 

 develop database deployment process (migrations, data movement, ETL) 

 integrate configuration management as part of the release process 

 develop complex deployments (IoT, Azure IoT Edge, mobile, App Center, DR, multi-

region, CDN, sovereign cloud, Azure Stack, etc.) 

Implement an orchestration automation solution 

 combine release targets depending on release deliverable (e.g., Infrastructure, code, 

assets, etc.) 

 design the release pipeline to ensure reliable order of dependency deployments 

 organize shared release configurations and process (YAML templates, variable groups, 

Azure App Configuration) 

 design and implement release gates and approval processes 

Plan the deployment environment strategy 



 design a release strategy (blue/green, canary, ring) 

 implement the release strategy (using deployment slots, load balancer configurations, 

Azure Traffic Manager, feature toggle, etc.) 

 select the appropriate desired state solution for a deployment environment (PowerShell 

DSC, Chef, Puppet, etc.) 

 plan for minimizing downtime during deployments (VIP Swap, Load balancer, rolling 

deployments, etc.) 

 design a hotfix path plan for responding to high priority code fixes 


